< B software
Improvement
L

Group

-

Software Improvement Group -
— the Good, the Bad and preventing the Ugly

ﬁ Luc Brandts
AT 14

. // SOFTWARE IMPROVEMENT GROUP CONFIDENTIAL 17 APRIL 2024

// INTRODUCTION
Contents

Managing
tech teams

. // SOFTWARE IMPROVEMENT GROUP CONFIDENTIAL

The impact of Generative Al on today’s world

The impressive rise of ChatGPT and similar solutions,
the need to embrace GenAl

And, the need to manage the change.
Lessons from our benchmark, lessons from the past

Al is increasingly making the life of software developers easy

D

Mty Chat - ChatGPT Trained on Your

Documentation

e~

- Otter Al Chat for
meelings
[YSvepPps— How Lo use an Al documentation generator to
2L0mICAly GOCUMONE YOl EF OCOLLES
. o o L
4 spnachio =3 e - [=e)
Get Code Reviewed in

Your Al Scrum - Saconds using Al
Master = v Lo Dy --::.:.w o My Ut e Youf A' m'r p mm
' - =

::' - o A m— ...

) Gub ¥ GitLab © Bmchet

Sl.l Warning

This presentation will be about the super powers of generative Al

This is something we should all embrace

This presentation is about how we should manage the change

. // SOFTWARE IMPROVEMENT GROUP CONFIDENTIAL 4

< B software
Improvement
[Group

SIG Background

[&) Luc Brandts

\ & 3 4
AT 14

. // SOFTWARE IMPROVEMENT GROUP 4 OCTOBER 2023

2.0.0.9.0.¢
The SIG benchmark based on a
° certified and yearly calibrated
. . subset of the data in our data
). 0.0 0 ¢ warehouse.
olalatai S AYIERK Bl S8 a1 0 . . 200+ billion
' Lines of code in data
warehouse, representing the
largest benchmark of its kind
2.0 0.9 0 ¢ Y
K » ee © ° e e*%e _ o
% . . .0 o .o.od' o‘ o.o.....' :k.‘.
g t ce N SIG is the benchmark in *
S - “ . security management
& otk . ’ ISO 27.001 Certified °
SOC I and SOC Il certified
0 1 10 100

Application Volume
in Developer Years

. // SOFTWARE IMPROVEMENT GROUP CONFIDENTIAL

// PROOF - RETURN ON INVESTMENT — MONITORING
Build quality is a strong predictor for costs and risks

Time required to implement new functionality Time required for resolution of bugs

Yec el |

0 7 14 21 28 35 42 49 656 0 7 14 21 28 35 42 49 56

A >okskk st system requires 3.5 times less effort™ to maintain than a Yo star system

*Source: “Faster issue resolution with higher technical quality of software”, Software Quality Journal, 2011

. // SOFTWARE IMPROVEMENT GROUP PUBLIC

Overspend

Consistent monitoring of each system leads to lower cost of ownership

Overspend on cost of ownership on Maintenance

Continuous focus on quality yields results. Unmonitored systems gradually get
worse, and therefore the speed of making changes goes down drastically. This
is a common observation across many systems.

Research based on 1.000’s of systems, comparing SIG client systems versus major Open Source systems Unmonitored
Monitored

Month

Security risk in bad quality software up to 10 times higher

300%

200%

100%

Vulnerability risk

——

Yottt Yook e 18 8.8 ¢ 18,0, 8.0 ¢

0%

Library build quality

Data on 50K Java & Python library versions

< B software
Improvement
[Group

Open Source

[&) Luc Brandts

\ & 3 4
AT 14

. // SOFTWARE IMPROVEMENT GROUP 4 OCTOBER 2023

The severity of vulnerabilities is not a major factor whether updates are done

Time-to-update: severity of vulnerabilities

Tracking 8000 vulnerable Maven dependencies in 220 Java systems

CVE severity — Low — Medium — High — Critical

o
Q
-
==

Call to action!

EN
Q
-
==

*
L4
[]

w
Q
b
==

‘Illlllllllllllllllll" .IIIIIIIIIIIIIIIIIII..

a

J p—

—'—f_q:

<

20% _a—l’—".:IJ

o/

-
Q
-~
c

2
o~

Chance that a vulnerable dependency was updated

0 100 200

300 400

Days since a dependency is known to be vulnerable

Key findings:

Users of known vulnerable
open-source libraries are not
updating quickly, even if
vulnerabilties are critical.

70% are still using known
vulnerable Java libraries after a
year has passed.

In many cases, security updates
are available that can be
implemented by development
teams.

Critically vulnerable

60%

40%

Go to zero vulnerabilities, business critical systems first

Call to action!

*
lll
*

Aoﬂjer systems

Oct '21

Apr '22

Oct '22

Business Critical systems

Apr '23

< B software
Improvement
[Group

Al and data-analysis systems .
So, how about Al?

ﬁ Luc Brandts
AT 14

. // SOFTWARE IMPROVEMENT GROUP 4 OCTOBER 2023

Al is increasingly making the life of software developers easy

D

Mty Chat - ChatGPT Trained on Your

Documentation

e~

- Otter Al Chat for
meelings
[YSvepPps— How Lo use an Al documentation generator to
2L0mICAly GOCUMONE YOl EF OCOLLES
. o o L
4 spnachio =3 e - [=e)
Get Code Reviewed in

Your Al Scrum - Saconds using Al
Master = v Lo Dy --::.:.w o My Ut e Youf A' m'r p mm
' - =

::' - o A m— ...

) Gub ¥ GitLab © Bmchet

“Al pair programmer should be supervised like a toddler, says researcher”

P

Crappy code, crappy Copilot.
GitHub Copilot is writing
vulnerable code and it could
be your fault

DevSecAl: GitHub Copilot prone to writing
security flaws

rewind Products Solutions Pricng Resources Support Partners About

Copilot: GitHub'’s Al Tool Speeds Up

Development, but Comes with
Risks Oh, and yes... these images

were generated by Al

// THE CHALLENGE OF Al

Analyse the skill gaps of all job roles

Digital transformation leader
Information securlt mana er
| educa
P d Owner
Chief information officer
Service mana er
Enterprise archi
crum master
Pro;'e;,cée msmager
ms arggfg&
igital consultant
Information security specialist
Systems administrator
Technical specialist
ICT operauons manager
Accou tmmager
Digltal media specra ist
Devel ?
tems analyst
Ops expert
Test specnalist
Network specialist
Data protection officer
olution designer
Business Informahon man io

Top-3 missing Developers skills :
1. Component Integration

a sci
Data a mlms
Business ana
Quality assurance mana}e
Data specidist

——— 7 2T il

0 20 40 60 80
EXIN Astride results for 5,500 participants.

. // SOFTWARE IMPROVEMENT GROUP 16

How do we engineer machine learning?

Data engineering Operations & governance

Source data

Regular software engineering

Dataprep code Application code

2.Apply algorithm
1.Train algorithm Trained regularities

Train/test code _ _
Model engineering

- =Code =Writing code - =Exploring & experimenting

Examples input
and output

Experimentation/analysis - for dataprep a

- =Data

Educate and coach data scientists in software engineering

GREATEST(IIF(ISNULL(i_RS_VLD_FM _DT),TO_DATE(v_
LOGC_RSVD_VAIL_UNKNOWN, ‘YYYY-MM-DD HH24:MI:’),i_
RS_VLD_FM_DT),IIF(ISNULL(i_RS_VLD_FM_DT fauit),
TO_DATE(v_LOGC_RSVD_VAI,_UNKNOWN, ‘YYYY-MM-DD
HH24:MI:8S’), i RS_VLD_FM_DT fauit),ITF(ISNULL(i_
RS_VLD_FM_DT xref sol),TO_DATE(v_LOGC_RSVD_VAIL_
UNKNOWN, ‘YYYY-MM-DD HH24:MI:SS’),i RS VLD _FM _DT_

xref sol))

Greatest (MakeValidDate(i_RS_VLD_FM_DT),
MakeValidDate(i_RS_VLD_FM_DT fauit),
MakeValidDate(i_RS_VLD_FM_DT xref sol))

ok ek

L8 % 8 1

1.8 8§01

ottt

Build quality

w ek

Currently build Al/big data systems are the future legacy

e Al/big data systems ® SIG Benchmark

100
Volume (Person Months)

1,000

10,000

Just an example of what goes wrong

Test-code Ratio

Al/big data
1.5%

Median
43%

Recommended

80%

< B software
Improvement
[Group

How to manage the change .

ﬁ Luc Brandts

AT 14

. // SOFTWARE IMPROVEMENT GROUP 4 OCTOBER 2023

Key take-aways

Embrace new technology, embrace Al
Understand Al is like any new technology: it has strong points, but it is not without its mistakes
Understand that roles change from creation to review
Make sure you understand it before you use it (at least know the pitfalls)
Apply rigorous methods to ensure it works
Don’t destroy the innovation with red tape

But also don’t destroy your future with stuff that doesn’t scale or last

